Lutte contre le blanchiment d’argent (AML)Anti Money Laundering (AML)Anti Money Laundering (AML)

Contexte

Née en 1976 aux États-Unis, et en France depuis 1989, la lutte contre le blanchiment (Anti Money Laundering ou AML ) est au cœur des enjeux des établissements financiers.
La crise financière de 2008 a remis en avant la nécessité de lutter contre les paradis fiscaux dont l’opacité permet aux acteurs : de prospérer et de réaliser des transactions qui menacent la stabilité du système financier, avec un cadre de règles prudentielles et de supervision bien moindre. 

 

Challenges

L’un des principaux enjeux dans l’AML est la réduction de faux-positifs, c’est-à-dire de fausses alertes, qui sont émis par les dispositifs de lutte actuels. En effet, les faux-positifs représentent plus de 98% des cas d’alertes. C’est notamment là que l’intelligence artificielle trouve son utilité, afin de réduire ce pourcentage et donc d’allouer plus de ressources pour les véritables cas de fraudes.
De plus, son utilisation dans les procédures KYC permet d’augmenter la connaissance client et donc d’améliorer la sécurité.

 

Solutions

L’identification de données redondantes grâce à l’analyse sémantique ou encore l’analyse statistique des fichiers contenant les informations et transaction des clients peuvent réduire les cas de faux positifs.
Le machine learning permet de détecter les anomalies transactionnelles et comportementales en analysant les mouvements bancaires.
L’analyse des données externe et non structurées peut également fournir de précieuses informations pour la lutte contre le blanchiment d’argent.

Si vous êtes intéressés, contactez nous !

 

Intéréssés ? Échangeons sur vos enjeux et demandez une démo.

demander une démo

Background

Created in 1976 in the United States, and in France since 1989, the fight against money laundering (Anti Money Laundering or AML) is at the heart of the challenges facing financial institutions.
The 2008 financial crisis highlighted the need to combat tax havens whose opacity allows actors to prosper and carry out transactions that threaten the stability of the financial system, with a much less stringent framework of prudential rules and supervision.

Challenges

One of the main issues in AML is the reduction of false positives, i. e. false alarms, which are issued by current control systems. Indeed, false positives represent more than 98% of all alerts. This is where artificial intelligence finds its usefulness, in order to reduce this percentage and thus allocate more resources for real cases of fraud.
In addition, its use in KYC procedures increases customer knowledge and therefore improves safety.

 

 

Solutions

Identifying redundant data through semantic analysis or statistical analysis of files containing customer information and transactions can reduce false positives.
The machine learning allows to detect transactional and behavioural anomalies by analysing banking movements.
The analysis of external and unstructured data can also provide valuable information for the fight against money laundering.

If you are interested, contact us!

 

Interested? Let’s discuss your issues and ask for a demo.

ask for a demo

Hintergrund

Der 1976 in den Vereinigten Staaten und in Frankreich seit 1989 gegründete Kampf gegen die Geldwäsche (Anti Money Laundering oder AML) steht im Mittelpunkt der Herausforderungen, vor denen die Finanzinstitute stehen.
Die Finanzkrise von 2008 hat die Notwendigkeit deutlich gemacht, Steueroasen zu bekämpfen, deren Undurchsichtigkeit es den Akteuren ermöglicht, erfolgreich zu sein und Transaktionen durchzuführen, die die Stabilität des Finanzsystems gefährden, mit einem viel weniger strengen Rahmen von Aufsichtsregeln und Aufsicht.

Herausforderungen

Eines der Hauptthemen in der AML ist die Reduzierung von Fehlalarmen, d. h. Fehlalarmen, die von aktuellen Kontrollsystemen ausgegeben werden. Tatsächlich machen False Positives mehr als 98% aller Warnungen aus. Hier findet die künstliche Intelligenz ihren Nutzen, um diesen Prozentsatz zu reduzieren und so mehr Mittel für reale Betrugsfälle bereitzustellen.
Darüber hinaus erhöht der Einsatz in KYC-Verfahren das Kundenwissen und damit die Sicherheit.

 

 

Lösungen

Die Identifizierung redundanter Daten durch semantische Analyse oder statistische Analyse von Dateien mit Kundeninformationen und Transaktionen kann Fehlalarme reduzieren.
Das maschinelle Lernen ermöglicht es, Transaktions- und Verhaltensanomalien durch die Analyse von Bankbewegungen zu erkennen.
Die Analyse von externen und unstrukturierten Daten kann auch wertvolle Informationen für die Bekämpfung der Geldwäsche liefern.

Wenn du interessiert bist, kontaktiere uns!

 

Interessiert? Lassen Sie uns Ihre Probleme besprechen und eine Demo anfordern.

Fragen Sie nach einer Demo